Перевод: со всех языков на все языки

со всех языков на все языки

Journal of the Royal Aeronautical Society

  • 1 Wenham, Francis Herbert

    SUBJECT AREA: Aerospace
    [br]
    b. 1824 London, England
    d. 11 August 1908 Folkestone, England
    [br]
    English engineer, inventor and pioneer aerodynamicist who built the first wind tunnel.
    [br]
    Wenham trained as a marine engineer and later specialized in screw propellers and high-pressure engines. He had many interests. He took his steamboat to the Nile and assisted the photographer F.Frith to photograph Egyptian tombs by devising a series of mirrors to deflect sunlight into the dark recesses. He experimented with gas engines and produced a hot-air engine. Wenham was a leading, if controversial, figure in the Microscopical Society and a member of the Royal Photographic Society; he developed an enlarger.
    Wenham was interested in both mechanical and lighter-than-air flight. One of his friends was James Glaisher, a well-known balloonist who made many ascents to gather scientific information. When the (Royal) Aeronautical Society of Great Britain was founded in 1866, the Rules were drawn up by Wenham, Glaisher and the Honorary Secretary, F.W.Brearey. At the first meeting of the Society, on 27 June 1866, "On aerial locomotion and the laws by which heavy bodies impelled through the air are sustained" was read by Wenham. In his paper Wenham described his experiments with a whirling arm (used earlier by Cayley) to measure lift and drag on flat surfaces inclined at various angles of incidence. His studies of birds' wings and, in particular, their wing loading, showed that they derived most of their lift from the front portion, hence a long, thin wing was better than a short, wide one. He published illustrations of his glider designs covering his experiments of c. 1858–9. One of these had five slender wings one above the other, an idea later developed by Horatio Phillips. Wenham had some success with a model, but no real success with his full-size gliders.
    In 1871, Wenham and John Browning constructed the first wind tunnel designed for aeronautical research. It utilized a fan driven by a steam engine to propel the air and had a working section of 18 in. (116 cm). Wenham continued to play an important role in aeronautical matters for many years, including a lengthy exchange of ideas with Octave Chanute from 1892 onwards.
    [br]
    Principal Honours and Distinctions
    Honorary Member of the (Royal) Aeronautical Society.
    Bibliography
    Wenham published many reports and papers. These are listed, together with a reprint of his paper "Aerial locomotion", in the Journal of the Royal Aeronautical Society (August 1958).
    Further Reading
    Two papers by J.Laurence Pritchard, 1957, "The dawn of aerodynamics" Journal of the Royal Aeronautical Society (March); 1958, "Francis Herbert Wenham", Journal of the Royal Aeronautical Society (August) (both papers describe Wenham and his work).
    J.E.Hodgson, 1924, History of Aeronautics in Great Britain, London.
    JDS

    Biographical history of technology > Wenham, Francis Herbert

  • 2 Stringfellow, John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 December 1799 Sheffield, England
    d. 13 December 1883 Chard, England
    [br]
    English inventor and builder of a series of experimental model aeroplanes.
    [br]
    After serving an apprenticeship in the lace industry, Stringfellow left Nottingham in about 1820 and moved to Chard in Somerset, where he set up his own business. He had wide interests such as photography, politics, and the use of electricity for medical treatment. Stringfellow met William Samuel Henson, who also lived in Chard and was involved in lacemaking, and became interested in his "aerial steam carriage" of 1842–3. When support for this project foundered, Henson and Stringfellow drew up an agreement "Whereas it is intended to construct a model of an Aerial Machine". They built a large model with a wing span of 20 ft (6 m) and powered by a steam engine, which was probably the work of Stringfellow. The model was tested on a hillside near Chard, often at night to avoid publicity, but despite many attempts it never made a successful flight. At this point Henson emigrated to the United States. From 1848 Stringfellow continued to experiment with models of his own design, starting with one with a wing span of 10 ft (3m). He decided to test it in a disused lace factory, rather than in the open air. Stringfellow fitted a horizontal wire which supported the model as it gained speed prior to free flight. Unfortunately, neither this nor later models made a sustained flight, despite Stringfellow's efficient lightweight steam engine. For many years Stringfellow abandoned his aeronautical experiments, then in 1866 when the (Royal) Aeronautical Society was founded, his interest was revived. He built a steam-powered triplane, which was demonstrated "flying" along a wire at the world's first Aeronautical Exhibition, held at Crystal Palace, London, in 1868. Stringfellow also received a cash prize for one of his engines, which was the lightest practical power unit at the Exhibition. Although Stringfellow's models never achieved a really successful flight, his designs showed the way for others to follow. Several of his models are preserved in the Science Museum in London.
    [br]
    Principal Honours and Distinctions
    Member of the (Royal) Aeronautical Society 1868.
    Bibliography
    Many of Stringfellow's letters and papers are held by the Royal Aeronautical Society, London.
    Further Reading
    Harald Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury. A.M.Balantyne and J.Laurence Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    "The aeronautical work of John Stringfellow, with some account of W.S.Henson", Aeronau-tical Classics No. 5 (written by John Stringfellow's son and held by the Royal Aeronautical Society in London).
    JDS

    Biographical history of technology > Stringfellow, John

  • 3 Handley Page, Sir Frederick

    SUBJECT AREA: Aerospace
    [br]
    b. 15 November 1885 Cheltenham, England
    d. 21 April 1962 London, England
    [br]
    English aviation pioneer, specialist in large aircraft and developer of the slotted wing for safer slow flying.
    [br]
    Frederick Handley Page trained as an electrical engineer but soon turned his attention to the more exciting world of aeronautics. He started by manufacturing propellers for aeroplanes and airships, and then in 1909 he founded a public company. His first aeroplane, the Bluebird, was not a success, but an improved version flew well. It was known as the "Yellow Peril" because of its yellow doped finish and made a notable flight across London from Barking to Brooklands. In 1910 Handley Page became one of the first college lecturers in aeronautical engineering. During the First World War Handley Page concentrated on the production of large bombers. The 0/100 was a biplane with a wing span of 100 ft (30 m) and powered by two engines: it entered service in 1916. In 1918 an improved version, the 0/400, entered service and a larger four-engined bomber made its first flight. This was the V/1500, which was designed to bomb Berlin, but the war ended before this raid took place. After the war, Handley Page turned his attention to airline operations with the great advantage of having at his disposal large bombers which could be adapted to carry passengers. Handley Page Air Transport Ltd was formed in 1919 and provided services to several European cities. Eventually this company became part of Imperial Airways, but Handley Page continued to supply them with large airliners. Probably the most famous was the majestic HP 42 four-engined biplane, which set very high standards of comfort and safety. Safety was always important to Handley Page and in 1920 he developed a wing with a slot along the leading edge: this made slow flying safer by delaying the stall. Later versions used separate aerofoil-shaped slats on the leading edge that were sometimes fixed, sometimes retractable. The HP 42 was fitted with these slats. From the 1930s Handley Page produced a series of bombers, such as the Heyford, Hampden, Harrow and, most famous of all, the Halifax, which played a major role in the Second World War. Then followed the Victor V-bomber of 1952 with its distinctive "crescent" wing and high tailplane. Sir Frederick's last venture was the Herald short-haul airliner of 1955; designed to replace the ubiquitous Douglas DC-3, it was only a limited success.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1918. Lord Lieutenant of the County of Middlesex 1956–60. Honorary Fellow of the Royal Aeronautical Society.
    Bibliography
    1950, "Towards slower and safer flying, improved take-off and landing and cheaper airports", Journal of the Royal Aeronautical Society.
    Further Reading
    D.C.Clayton, 1970, Handley Page: An Aircraft Album, London (for details of his aircraft).
    C.H.Barnes, 1976, Handley Page Aircraft since 1907, London.
    JDS

    Biographical history of technology > Handley Page, Sir Frederick

  • 4 Griffith, Alan Arnold

    [br]
    b. 13 June 1893 London, England
    d. 13 October 1963 Farnborough, England
    [br]
    English research engineer responsible for many original ideas, including jet-lift aircraft.
    [br]
    Griffith was very much a "boffin", for he was a quiet, thoughtful man who shunned public appearances, yet he produced many revolutionary ideas. During the First World War he worked at the Royal Aircraft Factory, Farnborough, where he carried out research into structural analysis. Because of his use of soap films in solving torsion problems, he was nicknamed "Soap-bubble".
    During the 1920s Griffith carried out research into gas-turbine design at the Royal Aircraft Establishment (RAE; as the Royal Aircraft Factory had become). In 1929 he made proposals for a gas turbine driving a propeller (a turboprop), but the idea was shelved. In the 1930s he was head of the Engine Department of the RAE and developed multi-stage axial compressors, which were later used in jet engines. This work attracted the attention of E.W. (later Lord) Hives of Rolls-Royce who persuaded Griffith to join Rolls-Royce in 1939. His first major project was a "contra-flow" jet engine, which was a good idea but a practical failure. However, Griffith's axial-flow compressor experience played an important part in the success of Rolls-Royce jet engines from the Avon onwards. He also proposed the bypass principle used for the Conway.
    Griffith experimented with suction to control the boundary layer on wings, but his main interest in the 1950s centred on vertical-take-off and -landing aircraft. He developed the remarkable "flying bedstead", which consisted of a framework (the bedstead) in which two jet engines were mounted with their jets pointing downwards, thus lifting the machine vertically. It first flew in 1954 and provided much valuable data. The Short SC1 aircraft followed, with four small jets providing lift for vertical take-off and one conventional jet to provide forward propulsion. This flew successfully in the late 1950s and early 1960s. Griffith proposed an airliner with lifting engines, but the weight of the lifting engines when not in use would have been a serious handicap. He retired in 1960.
    [br]
    Principal Honours and Distinctions
    CBE 1948. FRS 1941. Royal Aeronautical Society Silver Medal 1955; Blériot Medal 1962.
    Bibliography
    Griffith produced many technical papers in his early days; for example: 1926, Aerodynamic Theory of Turbine Design, Farnborough.
    Further Reading
    D.Eyre, 1966, "Dr A.A.Griffith, CBE, FRS", Journal of the Royal Aeronautical Society (June) (a detailed obituary).
    F.W.Armstrong, 1976, "The aero engine and its progress: fifty years after Griffith", Aeronautical Journal (December).
    O.Stewart, 1966, Aviation: The Creative Ideas, London (provides brief descriptions of Griffith's many projects).
    JDS

    Biographical history of technology > Griffith, Alan Arnold

  • 5 Sopwith, Sir Thomas (Tommy) Octave Murdoch

    SUBJECT AREA: Aerospace
    [br]
    b. 18 January 1888 London, England
    d. 27 January 1989 Stockbridge, Hampshire, England
    [br]
    English aeronautical engineer and industrialist.
    [br]
    Son of a successful mining engineer, Sopwith did not shine at school and, having been turned down by the Royal Navy as a result, attended an engineering college. His first interest was motor cars and, while still in his teens, he set up a business in London with a friend in order to sell them; he also took part in races and rallies.
    Sopwith's interest in aviation came initially through ballooning, and in 1906 he purchased his own balloon. Four years later, inspired by the recent flights across the Channel to France and after a joy-ride at Brooklands, he bought an Avis monoplane, followed by a larger biplane, and taught himself to fly. He was awarded the Royal Aero Society's Aviator Certificate No. 31 on 21 November 1910, and he quickly distinguished himself in flying competitions on both sides of the Atlantic and started his own flying school. In his races he was ably supported by his friend Fred Sigrist, a former motor engineer. Among the people Sopwith taught to fly were an Australian, Harry Hawker, and Major Hugh Trenchard, who later became the "father" of the RAF.
    In 1912, depressed by the poor quality of the aircraft on trial for the British Army, Sopwith, in conjunction with Hawker and Sigrist, bought a skating rink in Kingston-upon-Thames and, assisted by Fred Sigrist, started to design and build his first aircraft, the Sopwith Hybrid. He sold this to the Royal Navy in 1913, and the following year his aviation manufacturing company became the Sopwith Aviation Company Ltd. That year a seaplane version of his Sopwith Tabloid won the Schneider Trophy in the second running of this speed competition. During 1914–18, Sopwith concentrated on producing fighters (or "scouts" as they were then called), with the Pup, the Camel, the 1½ Strutter, the Snipe and the Sopwith Triplane proving among the best in the war. He also pioneered several ideas to make flying easier for the pilot, and in 1915 he patented his adjustable tailplane and his 1 ½ Strutter was the first aircraft to be fitted with air brakes. During the four years of the First World War, Sopwith Aviation designed thirty-two different aircraft types and produced over 16,000 aircraft.
    The end of the First World War brought recession to the aircraft industry and in 1920 Sopwith, like many others, put his company into receivership; none the less, he immediately launched a new, smaller company with Hawker, Sigrist and V.W.Eyre, which they called the H.G. Hawker Engineering Company Ltd to avoid any confusion with the former company. He began by producing cars and motor cycles under licence, but was determined to resume aircraft production. He suffered an early blow with the death of Hawker in an air crash in 1921, but soon began supplying aircraft to the Royal Air Force again. In this he was much helped by taking on a new designer, Sydney Camm, in 1923, and during the next decade they produced a number of military aircraft types, of which the Hart light bomber and the Fury fighter, the first to exceed 200 mph (322 km/h), were the best known. In the mid-1930s Sopwith began to build a large aviation empire, acquiring first the Gloster Aircraft Company and then, in quick succession, Armstrong-Whitworth, Armstrong-Siddeley Motors Ltd and its aero-engine counterpart, and A.V.Roe, which produced Avro aircraft. Under the umbrella of the Hawker Siddeley Aircraft Company (set up in 1935) these companies produced a series of outstanding aircraft, ranging from the Hawker Hurricane, through the Avro Lancaster to the Gloster Meteor, Britain's first in-service jet aircraft, and the Hawker Typhoon, Tempest and Hunter. When Sopwith retired as Chairman of the Hawker Siddeley Group in 1963 at the age of 75, a prototype jump-jet (the P-1127) was being tested, later to become the Harrier, a for cry from the fragile biplanes of 1910.
    Sopwith also had a passion for yachting and came close to wresting the America's Cup from the USA in 1934 when sailing his yacht Endeavour, which incorporated a number of features years ahead of their time; his greatest regret was that he failed in his attempts to win this famous yachting trophy for Britain. After his retirement as Chairman of the Hawker Siddeley Group, he remained on the Board until 1978. The British aviation industry had been nationalized in April 1977, and Hawker Siddeley's aircraft interests merged with the British Aircraft Corporation to become British Aerospace (BAe). Nevertheless, by then the Group had built up a wide range of companies in the field of mechanical and electrical engineering, and its board conferred on Sopwith the title Founder and Life President.
    [br]
    Principal Honours and Distinctions
    Knighted 1953. CBE 1918.
    Bibliography
    1961, "My first ten years in aviation", Journal of the Royal Aeronautical Society (April) (a very informative and amusing paper).
    Further Reading
    A.Bramson, 1990, Pure Luck: The Authorized Biography of Sir Thomas Sopwith, 1888– 1989, Wellingborough: Patrick Stephens.
    B.Robertson, 1970, Sopwith. The Man and His Aircraft, London (a detailed publication giving plans of all the Sopwith aircraft).
    CM / JDS

    Biographical history of technology > Sopwith, Sir Thomas (Tommy) Octave Murdoch

  • 6 Wright, Wilbur

    SUBJECT AREA: Aerospace
    [br]
    b. 16 April 1867 Millville, Indiana, USA
    d. 30 May 1912 Dayton, Ohio, USA
    [br]
    American co-inventor, with his brother Orville Wright (b. 19 August 1871 Dayton, Ohio, USA; d. 30 January 1948 Dayton, Ohio, USA), of the first powered aeroplane capable of sustained, controlled flight.
    [br]
    Wilbur and Orville designed and built bicycles in Dayton, Ohio. In the 1890s they developed an interest in flying which led them to study the experiments of gliding pioneers such as Otto Lilienthal in Germany, and their fellow American Octave Chanute. The Wrights were very methodical and tackled the many problems stage by stage. First, they developed a method of controlling a glider using movable control surfaces, instead of weight-shifting as used in the early hand-gliders. They built a wind tunnel to test their wing sections and by 1902 they had produced a controllable glider. Next they needed a petrol engine, and when they could not find one to suit their needs they designed and built one themselves.
    On 17 December 1903 their Flyer was ready and Orville made the first short flight of 12 seconds; Wilbur followed with a 59-second flight covering 853 ft (260 m). An improved design, Flyer II, followed in 1904 and made about eighty flights, including circuits and simple ma-noeuvres. In 1905 Flyer III made several long flights, including one of 38 minutes covering 24½ miles (39 km). Most of the Wrights' flying was carried out in secret to protect their patents, so their achievements received little publicity. For a period of two and a half years they did not fly, but they worked to improve their Flyer and to negotiate terms for the sale of their invention to various governments and commercial syndi-cates.
    In 1908 the Wright Model A appeared, and when Wilbur demonstrated it in France he astounded the European aviators by making several flights lasting more than one hour and one of 2 hours 20 minutes. Considerable numbers of the Model A were built, but the European designers rapidly caught up and overtook the Wrights. The Wright brothers became involved in several legal battles to protect their patents: one of these, with Glenn Curtiss, went on for many years. Wilbur died of typhoid fever in 1912. Orville sold his interest in the Wright Company in 1915, but retained an interest in aeronautical research and lived on to see an aeroplane fly faster than the speed of sound.
    [br]
    Principal Honours and Distinctions
    Royal Aeronautical Society (London) Gold Medal (awarded to both Wilbur and Orville) May 1909. Medals from the Aero Club of America, Congress, Ohio State and the City of Dayton.
    Bibliography
    1951, Miracle at Kitty Hawk. The Letters of Wilbur \& Orville Wright, ed. F.C.Kelly, New York.
    1953, The Papers of Wilbur and Orville Wright, ed. Marvin W.McFarland, 2 vols, New York.
    Orville Wright, 1953, How We Invented the Aeroplane, ed. F.C.Kelly, New York.
    Further Reading
    A.G.Renstrom, 1968, Wilbur \& Orville Wright. A Bibliography, Washington, DC (with 2,055 entries).
    C.H.Gibbs-Smith, 1963, The Wright Brothers, London (reprint) (a concise account).
    J.L.Pritchard, 1953, The Wright Brothers', Journal of the Royal Aeronautical Society (December) (includes much documentary material).
    F.C.Kelly, 1943, The Wright Brothers, New York (reprint) (authorized by Orville Wright).
    H.B.Combs with M.Caidin, 1980, Kill Devil Hill, London (contains more technical information).
    T.D.Crouch, 1989, The Bishop's Boys: A Life of Wilbur \& Orville Wright, New York (perhaps the best of various subsequent biographies).
    JDS

    Biographical history of technology > Wright, Wilbur

  • 7 Phillips, Horatio Frederick

    SUBJECT AREA: Aerospace
    [br]
    b. 2 February 1845 London, England
    d. 15 July 1926 Hampshire, England
    [br]
    English aerodynamicist whose cambered two-surface wing sections provided the foundations for aerofoil design.
    [br]
    At the age of 19, Phillips developed an interest in flight and constructed models with lightweight engines. He spent a large amount of time and money over many years, carrying out practical research into the science of aerodynamics. In the early 1880s he built a wind tunnel with a working section of 15 in. by 10 in. (38 cm by 25 cm). Air was sucked through the working section by an adaptation of the steam injector used in boilers and invented by Henry Giffard, the airship pioneer. Phillips tested aerofoils based on the cross-section of bird's wings, with a greater curvature on the upper surface than the lower. He measured the lift and drag and showed that the major component of lift came from suction on the upper surface, rather than pressure on the lower. He took out patents for his aerofoil sections in 1884 and 1891. In addition to his wind-tunnel test, Phillips tested his wing sections on a whirling arm, as used earlier by Cayley, Wenham and Lilienthal. After a series of tests using an arm of 15 ft (4.57 m) radius, Phillips built a massive whirling arm driven by a steam engine. His test pieces were mounted on the end of the arm, which had a radius of 50 ft (15.24 m), giving them a linear speed of 70 mph (113 km/h). By 1893 Phillips was ready to put his theories to a more practical test, so he built a large model aircraft driven by a steam engine and tethered to run round a circular track. It had a wing span of 19 ft (5.79 m), but it had fifty wings, one above the other. These wings were only 10 in. (25 cm) wide and mounted in a frame, so it looked rather like a Venetian blind. At 40 mph (64 km/h) it lifted off the track. In 1904 Phillips built a full-size multi-wing aeroplane with twenty wings which just lifted off the ground but did not fly. He built another multi-wing machine in 1907, this time with four Venetian blind' frames in tandem, giving it two hundred wings! Phillips made a short flight of almost 500 ft (152 m) which could be claimed to be the first powered aeroplane flight in England by an Englishman. He retired from flying at the age of 62.
    [br]
    Bibliography
    1900, "Mechanical flight and matters relating thereto", Engineering (reprint).
    1891–3, "On the sustentation of weight by mechanical flight", Aeronautical Society of Great Britain 23rd Report.
    Further Reading
    J.Laurence Pritchard, 1957, "The dawn of aerodynamics", Journal of the Royal Aeronautical Society (March) (good descriptions of Phillips's early work and his wind tunnel).
    F.W.Brearey, 1891–3, "Remarks on experiments made by Horatio Phillips", Aeronautical Society of Great Britain 23rd Report.
    JDS

    Biographical history of technology > Phillips, Horatio Frederick

  • 8 Short, Hugh Oswald

    SUBJECT AREA: Aerospace
    [br]
    b. 16 January 1883 Derbyshire, England
    d. 4 December 1969 Haslemere, England
    [br]
    English co-founder, with his brothers Horace Short (1872–1917) and Eustace (1875–1932), of the first company to design and build aeroplanes in Britain.
    [br]
    Oswald Short trained as an engineer; he was largely self-taught but was assisted by his brothers Eustace and Horace. In 1898 Eustace and the young Oswald set up a balloon business, building their first balloon in 1901. Two years later they sold observation balloons to the Government of India, and further orders followed. Meanwhile, in 1906 Horace designed a high-altitude balloon with a spherical pressurized gondola, an idea later used by Auguste Piccard, in 1931. Horace, a strange genius with a dominating character, joined his younger brothers in 1908 to found Short Brothers. Their first design, based on the Wright Flyer, was a limited success, but No. 2 won a Daily Mail prize of £1,000. In the same year, 1909, the Wright brothers chose Shorts to build six of their new Model A biplanes. Still using the basic Wright layout, Horace designed the world's first twin-engined aeroplane to fly successfully: it had one engine forward of the pilot, and one aft. During the years before the First World War the Shorts turned to tractor biplanes and specialized in floatplanes for the Admiralty.
    Oswald established a seaplane factory at Rochester, Kent, during 1913–14, and an airship works at Cardington, Bedfordshire, in 1916. Short Brothers went on to build the rigid airship R 32, which was completed in 1919. Unfortunately, Horace died in 1917, which threw a greater responsibility onto Oswald, who became the main innovator. He introduced the use of aluminium alloys combined with a smooth "stressed-skin" construction (unlike Junkers, who used corrugated skins). His sleek biplane the Silver Streak flew in 1920, well ahead of its time, but official support was not forthcoming. Oswald Short struggled on, trying to introduce his all-metal construction, especially for flying boats. He eventually succeeded with the biplane Singapore, of 1926, which had an all-metal hull. The prototype was used by Sir Alan Cobham for his flight round Africa. Several successful all-metal flying boats followed, including the Empire flying boats (1936) and the ubiquitous Sunderland (1937). The Stirling bomber (1939) was derived from the Sunderland. The company was nationalized in 1942 and Oswald Short retired the following year.
    [br]
    Principal Honours and Distinctions
    Honorary Fellow of the Royal Aeronautical Society. Freeman of the City of London. Oswald Short turned down an MBE in 1919 as he felt it did not reflect the achievements of the Short Brothers.
    Bibliography
    1966, "Aircraft with stressed skin metal construction", Journal of the Royal Aeronautical Society (November) (an account of the problems with patents and officialdom).
    Further Reading
    C.H.Barnes, 1967, Shorts Aircraft since 1900, London; reprinted 1989 (a detailed account of the work of the Short brothers).
    JDS

    Biographical history of technology > Short, Hugh Oswald

  • 9 de Havilland, Sir Geoffrey

    SUBJECT AREA: Aerospace
    [br]
    b. 27 July 1882 High Wycombe, Buckinghamshire, England
    d. 21 May 1965 Stanmore, Middlesex, England
    [br]
    English designer of some eighty aircraft from 1909 onwards.
    [br]
    Geoffrey de Havilland started experimenting with aircraft and engines of his own design in 1908. In the following year, with the help of his friend Frank Hearle, he built and flew his first aircraft; it crashed on its first flight. The second aircraft used the same engine and made its first flight on 10 September 1910, and enabled de Havilland to teach himself to fly. From 1910 to 1914 he was employed at Farnborough, where in 1912 the Royal Aircraft Factory was established. As Chief Designer and Chief Test Pilot he was responsible for the BE 2, which was the first British military aircraft to land in France in 1914.
    In May 1914 de Havilland went to work for George Holt Thomas, whose Aircraft Manufacturing Company Ltd (Airco) of Hendon was expanding to design and build aircraft of its own design. However, because de Havilland was a member of the Royal Flying Corps Reserve, he had to report for duty when war broke out in August. His value as a designer was recognized and he was transferred back to Airco, where he designed eight aircraft in four years. Of these, the DH 2, DH 4, DH 5, DH 6 and DH 9 were produced in large numbers, and a modified DH 4A operated the first British cross- Channel air service in 1919.
    On 25 September 1920 de Havilland founded his own company, the De Havilland Aircraft Company Ltd, at Stag Lane near Edgware, London. During the 1920s and 1930s de Havilland concentrated on civil aircraft and produced the very successful Moth series of small biplanes and monoplanes, as well as the Dragon, Dragon Rapide, Albatross and Flamingo airliners. In 1930 a new site was acquired at Hatfield, Hertfordshire, and by 1934 a modern factory with a large airfield had been established. His Comet racer won the England-Australia air race in 1934 using de Havilland engines. By this time the company had established very successful engine and propeller divisions. The Comet used a wooden stressed-skin construction which de Havilland developed and used for one of the outstanding aircraft of the Second World War: the Mosquito. The de Havilland Engine Company started work on jet engines in 1941 and their Goblin engine powered the Vampire jet fighter first flown by Geoffrey de Havilland Jr in 1943. Unfortunately, Geoffrey Jr and his brother John were both killed in flying accidents. The Comet jet airliner first flew in 1949 and the Trident in 1962, although by 1959 the De Havilland Company had been absorbed into Hawker Siddeley Aviation.
    [br]
    Principal Honours and Distinctions
    Knight Bachelor 1944. Order of Merit 1962. CBE 1934. Air Force Cross 1919. (A full list is contained in R.M.Clarkson's paper (see below)).
    Bibliography
    1961, Sky Fever, London; repub. 1979, Shrewsbury (autobiography).
    Further Reading
    R.M.Clarkson, 1967, "Geoffrey de Havilland 1882–1965", Journal of the Royal Aeronautical Society (February) (a concise account of de Havilland, his achievements and honours).
    C.M.Sharp, 1960, D.H.—An Outline of de Havilland History, London (mostly a history of the company).
    A.J.Jackson, 1962, De Havilland Aircraft since 1915, London.
    JDS

    Biographical history of technology > de Havilland, Sir Geoffrey

  • 10 Douglas, Donald Wills

    SUBJECT AREA: Aerospace
    [br]
    b. 6 April 1892 Brooklyn, New York, USA
    d. 1 February 1981 Palm Springs, California, USA
    [br]
    American aircraft designer best known for bis outstanding airliner', the DC-3.
    [br]
    In 1912 Donald Douglas went to the Massachusetts Institute of Technology to study aeronautical engineering. After graduating in this relatively new subject he joined the Glenn L.Martin Company as Chief Engineer. In 1920 he founded the Davis-Douglas Company in California to build an aircraft capable of flying across America non-stop: unfortunately, the Cloudster failed to achieve its target. Douglas reorganized the company in 1921 as the Douglas Company (later it became the Douglas Aircraft Company). In 1924 a team of US Army personnel made the first round-the-world flight in specially designed Douglas World Cruisers, a feat which boosted Douglas's reputation considerably. This reputation was further enhanced by his airliner, designed in 1935, that revolutionized air travel: the Douglas Commercial 3, or DC-3, of which some 13,000 were built. A series of piston-engined airliners followed, culminating in the DC-7. Meanwhile, in the military field, Douglas aircraft played a major part in the Second World War. In the jet age Douglas continued to produce a wide range of successful civil and military aircraft, and the company also moved into the rocket and guided missile business. In 1966 Donald W. Douglas was still Chairman of the company, with Donald W.Douglas Jr as President. In 1967 the company merged with the McDonnell Aircraft Company to become the giant McDonnell Douglas Corporation.
    [br]
    Principal Honours and Distinctions
    American Institute of Aeronautics and Astronautics; Daniel Guggenheim Medal 1939.
    Bibliography
    1935, "The development and reliability of the modern multi-engined airliner", Journal of the Royal Aeronautical Society, London (lecture).
    Further Reading
    B.Yenne, 1985, McDonnell Douglas: A Tale of Two Giants, London (pays some attention to both Douglas and McDonnell, but also covers the history of the companies and the aircraft they produced).
    René J.Francillon, 1979, McDonnell Douglas Aircraft since 1920, London; 1988, 2nd edn (a comprehensive history of the company's aircraft).
    JDS

    Biographical history of technology > Douglas, Donald Wills

  • 11 Henson, William Samuel

    SUBJECT AREA: Aerospace
    [br]
    b. 3 May 1812 Nottingham, England
    d. 22 March 1888 New Jersey, USA
    [br]
    English (naturalized American) inventor who patented a design for an "aerial steam carriage" and combined with John Stringfellow to build model aeroplanes.
    [br]
    William Henson worked in the lacemaking industry and in his spare time invented many mechanical devices, from a breech-loading cannon to an ice-machine. It could be claimed that he invented the airliner, for in 1842 he prepared a patent (granted in 1843) for an "aerial steam carriage". The patent application was not just a vague outline, but contained detailed drawings of a large monoplane with an enclosed fuselage to accommodate the passengers and crew. It was to be powered by a steam engine driving two pusher propellers aft of the wing. Henson had followed the lead give by Sir George Cayley in his basic layout, but produced a very much more advanced structural design with cambered wings strengthened by streamlined bracing wires: the intended wing-span was 150 ft (46 m). Henson probably discussed the design of the steam engine and boiler with his friend John Stringfellow (who was also in the lacemaking industry). Stringfellow joined Henson and others to found the Aerial Transit Company, which was set up to raise the finance needed to build Henson's machine. A great publicity campaign was mounted with artists' impressions of the "aerial steam carriage" flying over London, India and even the pyramids. Passenger-carrying services to India and China were proposed, but the whole project was far too optimistic to attract support from financiers and the scheme foundered. Henson and Stringfellow drew up an agreement in December 1843 to construct models which would prove the feasibility of an "aerial machine". For the next five years they pursued this aim, with no real success. In 1848 Henson and his wife emigrated to the United States to further his career in textiles. He became an American citizen and died there at the age of 75.
    [br]
    Bibliography
    Henson's diary is preserved by the Institute of Aeronautical Sciences in the USA. Henson's patent of 1842–3 is reproduced in Balantyne and Pritchard (1956) and Davy (1931) (see below).
    Further Reading
    H.Penrose, 1988, An Ancient Air: A Biography of John Stringfellow, Shrewsbury.
    A.M.Balantyne and J.L.Pritchard, 1956, "The lives and work of William Samuel Henson and John Stringfellow", Journal of the Royal Aeronautical Society (June) (an attempt to analyse conflicting evidence; includes a reproduction of Henson's patent).
    M.J.B.Davy, 1931, Henson and Stringfellow, London (an earlier work with excellent drawings from Henson's patent).
    JDS

    Biographical history of technology > Henson, William Samuel

  • 12 Dunne, John William

    SUBJECT AREA: Aerospace
    [br]
    b. 2 December 1875 Co. Kildare, Ireland
    d. 24 August 1949 Oxfordshire, England
    [br]
    Irish inventor who pioneered tailless aircraft designed to be inherently stable.
    [br]
    After serving in the British Army during the Boer War. Dunne returned home convinced that aeroplanes would be more suitable than balloons for reconnaissance work. He built models to test his ideas for a tailless design based on the winged seed of a Javanese climbing plant. In 1906 Dunne joined the staff of the Balloon Factory at Farnborough, where the Superintendent, Colonel J.E.Capper, was also interested in manned kites and aeroplanes. Since 1904 the colourful American "Colonel" S.F. Cody had been experimenting at Farnborough with manned kites, and in 1908 his "British Army Dirigible No. 1" made the first powered flight in Britain. Dunne's first swept-wing tailless glider was ready to fly in the spring of 1907, but it was deemed to be a military secret and flying it at Farnborough would be too public. Dunne, Colonel Capper and a team of army engineers took the glider to a remote site at Blair Atholl in Scotland for its test flights. It was not a great success, although it attracted snoopers, with the result that it was camouflaged. Powered versions made short hops in 1908, but then the War Office withdrew its support. Dunne and his associates set up a syndicate to continue the development of a new tailless aeroplane, the D 5; this was built by Short Brothers (see Short, Hugh Oswald) and flew successfully in 1910. It had combined elevators and ailerons on the wing tips (or elevons as they are now called when fitted to modern delta-winged aircraft). In 1913 an improved version of the D 5 was demonstrated in France, where the pilot left his cockpit and walked along the wing in flight. Dunne had proved his point and designed a stable aircraft, but his health was suffering and he retired. During the First World War, however, it was soon learned that military aircraft needed to be manoeuvrable rather than stable.
    [br]
    Bibliography
    1913, "The theory of the Dunne aeroplane", Journal of the Royal Aeronautical Society (April).
    After he left aviation, Dunne became well known for his writings on the nature of the universe and the interpretation of dreams. His best known-work was An Experiment
    With Time (1927; and reprints).
    Further Reading
    P.B.Walker, 1971, Early Aviation at Farnborough, Vol. I, London; 1974, Vol. II (provides a detailed account of Dunne's early work; Vol. II is the more relevant).
    P.Lewis, 1962, British Air craft 1809–1914, London (for details of Dunne's aircraft).
    JDS

    Biographical history of technology > Dunne, John William

  • 13 Focke, E.H.Heinrich

    SUBJECT AREA: Aerospace
    [br]
    b. October 1890 Bremen, Germany
    d. February 1979 Bremen, Germany
    [br]
    German aircraft designer who was responsible for the first practical helicopter, in 1936.
    [br]
    Between 1911 and 1914 Heinrich Focke and Georg Wulf built a monoplane and some years later, in 1924, they founded the Focke-Wulf company. They designed and built a variety of civil and military aircraft including the F 19Ente, a tail-first design of 1927. This canard layout was thought to be safer than conventional designs but, unfortunately, it crashed, killing Wulf. Around 1930 Focke became interested in rotary-wing aircraft, and in 1931 he set up a company with Gerd Achgelis to conduct research in this field. The Focke-Wulf company took out a licence to build Cierva autogiros. Focke designed an improved autogiro, the Fw 186, which flew in 1938; it was entered for a military competition, but it was beaten by a fixed-wing aircraft, the Fieseler Storch. In May 1935 Focke resigned from Focke-Wulf to concentrate on helicopter development with the Focke-Achgelis company. His first design was the Fa 61 helicopter, which utilized the fuselage and engine of a conventional aeroplane but instead of wings had two out-riggers, each carrying a rotor. The engine drove these rotors in opposite directions to counteract the adverse torque effect (with a single rotor the fuselage tends to rotate in the opposite direction to the rotor). Following its first flight on 26 June 1936, the Fa 61 went on to break several world records. However, it attracted more public attention when it was flown inside the huge Deutschlandhalle in Berlin by the famous female test pilot Hanna Reitsch in February 1938. Focke continued to develop his helicopter projects for the Focke-Achgelis company and produced the Fa 223 Drache in 1940. This used twin contra-rotating rotors, like the Fa 61, but could carry six people. Its production was hampered by allied bombing of the factory. During the Second World War Focke- Achgelis also produced a rotor kite which could be towed behind a U-boat to provide a flying "crow's nest", as well as designs for an advanced convertiplane (part aeroplane, part helicopter). After the war, Focke worked in France, the Netherlands and Brazil, then in 1954 he became Professor of Aeroplane and Helicopter Design at the University of Stuttgart.
    [br]
    Principal Honours and Distinctions
    Wissenschaftliche, Gesellschaft für Luftfahrt Lilienthal Medal, Prandtl-Ring.
    Bibliography
    1965, "German thinking on rotary-wing development", Journal of the Royal Aeronautical Society, (May).
    Further Reading
    W.Gunston and J.Batchelor, 1977, Helicopters 1900–1960, London.
    J.R.Smith, 1973, Focke-Wulf: An Aircraft Album, London (primarily a picture book). R.N.Liptrot, 1948, Rotating Wing Activities in Germany during the Period 1939–45, London.
    K.von Gersdorff and K.Knobling, 1982, Hubschrauber und Tragschrauber, Munich (a more recent publication, in German).
    JDS

    Biographical history of technology > Focke, E.H.Heinrich

  • 14 Junkers, Hugo

    SUBJECT AREA: Aerospace
    [br]
    b. 3 February 1859 Rheydt, Germany
    d. 3 February 1935 Munich, Germany
    [br]
    German aircraft designer, pioneer of all-metal aircraft, including the world's first real airliner.
    [br]
    Hugo Junkers trained as an engineer and in 1895 founded the Junkers Company, which manufactured metal products including gas-powered hot-water heaters. He was also Professor of Thermodynamics at the high school in Aachen. The visits to Europe by the Wright brothers in 1908 and 1909 aroused his interest in flight, and in 1910 he was granted a patent for a flying wing, i.e. no fuselage and a thick wing which did not require external bracing wires. Using his sheet-metal experience he built the more conventional Junkers J 1 entirely of iron and steel. It made its first flight in December 1915 but was rather heavy and slow, so Junkers turned to the newly available aluminium alloys and built the J 4 bi-plane, which entered service in 1917. To stiffen the thin aluminium-alloy skins, Junkers used corrugations running fore and aft, a feature of his aircraft for the next twenty years. Incidentally, in 1917 the German authorities persuaded Junkers and Fokker to merge, but the Junkers-Fokker Company was short-lived.
    After the First World War Junkers very rapidly converted to commercial aviation, and in 1919 he produced a single-engined low-wing monoplane capable of carrying four passengers in an enclosed cabin. The robust all-metal F 13 is generally accepted as being the world's first airliner and over three hundred were built and used worldwide: some were still in service eighteen years later. A series of low-wing transport aircraft followed, of which the best known is the Ju 52. The original version had a single engine and first flew in 1930; a three-engined version flew in 1932 and was known as the Ju 52/3m. This was used by many airlines and served with the Luftwaffe throughout the Second World War, with almost five thousand being built.
    Junkers was always ready to try new ideas, such as a flap set aft of the trailing edge of the wing that became known as the "Junkers flap". In 1923 he founded a company to design and manufacture stationary diesel engines and aircraft petrol engines. Work commenced on a diesel aero-engine: this flew in 1929 and a successful range of engines followed later. Probably the most spectacular of Junkers's designs was his G 38 airliner of 1929. This was the world's largest land-plane at the time, with a wing span of 44 m (144 ft). The wing was so thick that some of the thirty-four passengers could sit in the wing and look out through windows in the leading edge. Two were built and were frequently seen on European routes.
    [br]
    Bibliography
    1923, "Metal aircraft construction", Journal of the Royal Aeronautical Society, London.
    Further Reading
    G.Schmitt, 1988, Hugh Junkers and His Aircraft, Berlin.
    1990, Jane's Fighting Aircraft of World War I, London: Jane's (provides details of Junkers's aircraft).
    P. St J.Turner and H.J.Nowarra, 1971, Junkers: An Aircraft Album, London.
    JDS

    Biographical history of technology > Junkers, Hugo

  • 15 Cody, Colonel Samuel Franklin

    SUBJECT AREA: Aerospace
    [br]
    b. probably 6 March 1861 Texas, USA
    d. 7 August 1913 Farnborough, England
    [br]
    American (naturalised British) aviation pioneer who made the first sustained aeroplane flight in Britain.
    [br]
    "Colonel" Cody was one of the most colourful and controversial characters in aviation history. He dressed as a cowboy, frequently rode a horse, and appeared on the music-hall stage as a sharpshooter. Cody lived in England from 1896 and became a British subject in 1909. He wrote a melodrama, The Klondyke Nugget, which was first performed in 1898, with Cody as the villain and his wife as the heroine. It was a great success and Cody made enough money to indulge in his hobby of flying large kites. Several man-lifting kites were being developed in the mid-1890s, primarily for military observation purposes. Captain B.S.F. Baden-Powell built multiple hexagonal kites in England, while Lawrence Hargrave, in Australia, developed a very successful boxkite. Cody's man-lifting kites were so good that the British Government engaged him to supply kites, and act as an instructor with the Royal Engineers at the Balloon Factory, Farnborough. Cody's kites were rather like a box-kite with wings and, indeed, some were virtually tethered gliders. In 1905 a Royal Engineer reached a record height of 2,600 ft (790 m) in one of Cody's kites. While at Farnborough, Cody assisted with the construction of the experimental airship "British Army Dirigible No. 1", later known as Nulli Secundus. Cody was on board for the first flight in 1907. In the same year, Cody fitted an engine to one of his kites and it flew with no one on board; he also built a free-flying glider version. He went on to build a powered aeroplane with an Antoinette engine and on 16 October 1908 made a flight of 1,390 ft (424 m) at Farnborough; this was the first real flight in Britain. During the following years, Cody's large "Flying Cathedral" became a popular sight at aviation meetings, and in 1911 his "Cathedral" was the only British aeroplane to complete the course in the Circuit of Britain Contest. In 1912 Cody won the first British Military Aeroplane competition (a similar aeroplane is preserved by the Science Museum, London). Unfortunately, Cody and a passenger were killed when his latest aeroplane crashed at Farnborough in 1913; because Cody was such a popular figure at Farnborough, the tree to which he sometimes tethered his aeroplane was preserved as a memorial.
    Later, there was a great controversy over who the first person to make an aeroplane flight in Britain was, as A.V. Roe, Horatio Phillips and Cody had all made hops before October 1908; most historians, however, now accept that it was Cody. Cody's title of'Colonel' was unofficial, although it was used by King George V on one of several visits to see Cody's work.
    [br]
    Bibliography
    Cody gave a lecture to the (Royal) Aeronautical Society which was published in their
    Aeronautical Journal, London, January 1909.
    Further Reading
    P.B.Walker, 1971, Early Aviation at Farnborough, 2 vols, London (an authoritative source).
    A.Gould Lee, 1965, The Flying Cathedral, London (biography). G.A.Broomfield, 1953, Pioneer of the Air, Aldershot (a less-reliable biography).
    JDS

    Biographical history of technology > Cody, Colonel Samuel Franklin

  • 16 Cayley, Sir George

    SUBJECT AREA: Aerospace
    [br]
    b. 27 December 1773 Scarborough, England
    d. 15 December 1857 Brompton Hall, Yorkshire, England
    [br]
    English pioneer who laid down the basic principles of the aeroplane in 1799 and built a manned glider in 1853.
    [br]
    Cayley was born into a well-to-do Yorkshire family living at Brompton Hall. He was encouraged to study mathematics, navigation and mechanics, particularly by his mother. In 1792 he succeeded to the baronetcy and took over the daunting task of revitalizing the run-down family estate.
    The first aeronautical device made by Cayley was a copy of the toy helicopter invented by the Frenchmen Launoy and Bienvenu in 1784. Cayley's version, made in 1796, convinced him that a machine could "rise in the air by mechanical means", as he later wrote. He studied the aerodynamics of flight and broke away from the unsuccessful ornithopters of his predecessors. In 1799 he scratched two sketches on a silver disc: one side of the disc showed the aerodynamic force on a wing resolved into lift and drag, and on the other side he illustrated his idea for a fixed-wing aeroplane; this disc is preserved in the Science Museum in London. In 1804 he tested a small wing on the end of a whirling arm to measure its lifting power. This led to the world's first model glider, which consisted of a simple kite (the wing) mounted on a pole with an adjustable cruciform tail. A full-size glider followed in 1809 and this flew successfully unmanned. By 1809 Cayley had also investigated the lifting properties of cambered wings and produced a low-drag aerofoil section. His aim was to produce a powered aeroplane, but no suitable engines were available. Steam-engines were too heavy, but he experimented with a gunpowder motor and invented the hot-air engine in 1807. He published details of some of his aeronautical researches in 1809–10 and in 1816 he wrote a paper on airships. Then for a period of some twenty-five years he was so busy with other activities that he largely neglected his aeronautical researches. It was not until 1843, at the age of 70, that he really had time to pursue his quest for flight. The Mechanics' Magazine of 8 April 1843 published drawings of "Sir George Cayley's Aerial Carriage", which consisted of a helicopter design with four circular lifting rotors—which could be adjusted to become wings—and two pusher propellers. In 1849 he built a full-size triplane glider which lifted a boy off the ground for a brief hop. Then in 1852 he proposed a monoplane glider which could be launched from a balloon. Late in 1853 Cayley built his "new flyer", another monoplane glider, which carried his coachman as a reluctant passenger across a dale at Brompton, Cayley became involved in public affairs and was MP for Scarborough in 1832. He also took a leading part in local scientific activities and was co-founder of the British Association for the Advancement of Science in 1831 and of the Regent Street Polytechnic Institution in 1838.
    [br]
    Bibliography
    Cayley wrote a number of articles and papers, the most significant being "On aerial navigation", Nicholson's Journal of Natural Philosophy (November 1809—March 1810) (published in three numbers); and two further papers with the same title in Philosophical Magazine (1816 and 1817) (both describe semi-rigid airships).
    Further Reading
    L.Pritchard, 1961, Sir George Cayley, London (the standard work on the life of Cayley).
    C.H.Gibbs-Smith, 1962, Sir George Cayley's Aeronautics 1796–1855, London (covers his aeronautical achievements in more detail).
    —1974, "Sir George Cayley, father of aerial navigation (1773–1857)", Aeronautical Journal (Royal Aeronautical Society) (April) (an updating paper).
    JDS

    Biographical history of technology > Cayley, Sir George

  • 17 Sikorsky, Igor Ivanovich

    SUBJECT AREA: Aerospace
    [br]
    b. 25 May 1889 Kiev, Ukraine
    d. 26 October 1972 Easton, Connecticut, USA
    [br]
    Russian/American pioneer of large aeroplanes, flying boats, and helicopters.
    [br]
    Sikorsky trained as an engineer but developed an interest in aviation at the age of 19 when he was allowed to spend several months in Paris to meet French aviators. He bought an Anzani aero-engine and took it back to Russia, where he designed and built a helicopter. In his own words, "It had one minor technical problem—it would not fly—but otherwise it was a good helicopter".
    Sikorsky turned to aeroplanes and built a series of biplanes: by 1911 the 5–5 was capable of flights lasting an hour. Following this success, the Russian-Baltic Railroad Car Company commissioned Sikorsky to build a large aeroplane. On 13 May 1913 Sikorsky took off in the Grand, the world's first four-engined aeroplane. With a wing span of 28 m (92 ft) it was also the world's largest, and was unique in that the crew were in an enclosed cabin with dual controls. The even larger Ilia Mourometz flew the following year and established many records, including the carriage of sixteen people. During the First World War many of these aircraft were built and served as heavy bombers.
    Following the revolution in Russia during 1917, Sikorsky emigrated first to France and then the United States, where he founded his own company. After building the successful S-38 passenger-carrying amphibian, the Sikorsky Aviation Corporation became part of the United Aircraft Corporation and went on to produce several large flying boats. Of these, the four-engined S-42 was probably the best known, for its service to Hawaii in 1935 and trial flights across the Atlantic in 1937.
    In the late 1930s Sikorsky once again turned his attention to helicopters, and on 14 September 1939 his VS-300 made its first tentative hop, with Sikorsky at the controls. Many improvements were made and on 6 May 1941 Sikorsky made a record-breaking flight of over 1½ hours. The Sikorsky design of a single main lifting rotor combined with a small tail rotor to balance the torque effect has dominated helicopter design to this day. Sikorsky produced a long series of outstanding helicopter designs which are in service throughout the world.
    [br]
    Principal Honours and Distinctions
    Chevalier de la Légion d'honneur 1960. Presidential Certificate of Merit 1948. Aeronautical Society Silver Medal 1949.
    Bibliography
    1971, "Sixty years in flying", Aeronautical Journal (Royal Aeronautical Society) (November) (interesting and amusing).
    1938, The Story of the Winged S., New York; 1967, rev. edn.
    Further Reading
    D.Cochrane et al., 1990, The Aviation Careers of Igor Sikorsky, Seattle.
    K.N.Finne, 1988, Igor Sikorsky: The Russian Years, ed. C.J.Bobrow and V.Hardisty, Shrewsbury; orig. pub. in Russian, 1930.
    F.J.Delear, 1969, Igor Sikorsky: His Three Careers in Aviation, New York.
    JDS

    Biographical history of technology > Sikorsky, Igor Ivanovich

См. также в других словарях:

  • Royal Aeronautical Society — Founded in 1866 The Royal Aeronautical Society, also known as the RAeS, is a multidisciplinary professional institution dedicated to the entire global aerospace community.The objectives of The Royal Aeronautical Society include; to support and… …   Wikipedia

  • Royal Aeronautical Society — Die Zentrale der RAeS in London Die Royal Aeronautical Society (RAeS) ist eine weltweite Institution, die sich mit den vielseitigen Aspekten der Luft und Raumfahrt beschäftigt. Sie wurde am 12. Januar 1866 gegründet und ist die weltweit älteste… …   Deutsch Wikipedia

  • Royal Society of Chemistry — Formation 1980 (1841)[1] Type Learned society …   Wikipedia

  • Royal Medal — Die Royal Medal, auch The Queen s Medal genannt, ist eine von der Royal Society verliehene Auszeichnung für Wissenschaftler, die innerhalb des Commonwealth of Nations besonders wichtige Beiträge zur Weiterentwicklung der Wissenschaften geleistet… …   Deutsch Wikipedia

  • Royal Military College of Canada — Motto Truth, Duty, Valour Established 1876 Type …   Wikipedia

  • Nuclear weapons and the United Kingdom — United Kingdom Nuclear program start date 10 April 1940 First nuclear weapon test 2 October 1952 First fusion weapon test …   Wikipedia

  • Inventions in the modern Islamic world — [ Abdus Salam, the 1979 Nobel Prize in Physics recipient, include the electroweak interaction, electroweak symmetry breaking, magnetic photon, neutral current, preon, W and Z bosons, supergeometry, supermanifold, superspace and superfield.] This… …   Wikipedia

  • History of the Armée de l'Air (1909–1942) — The Armée de l Air (literally, army of the air ) is the name of the French Air Force in its native language. It has borne this name only from August 1933 when it was still under the jurisdiction of the army. Today, several other countries, all of …   Wikipedia

  • BADEN-POWELL — UNITED KINGDOM (see also List of Individuals) 22.5.1860 London/UK 3.10.1937 Chandler s Ford/UK Baden Fletcher Smyth Baden Powell was the brother of Robert, the founder of the Boys Scout movement. At the time of his death, Baden Powell was the… …   Hydraulicians in Europe 1800-2000

  • Avro Canada CF-105 Arrow — CF 105 Arrow Photo from the Canadian Department of National Defence Role Interceptor …   Wikipedia

  • RELF — UNITED KINGDOM (see also List of Individuals) 2.10.1888 Beckenham/UK 25.2.1970 Addlestone/UK Ernest Frederick Relf graduated in physics from the Royal College of Science, South Kensington, in 1912. He then joined the staff of the National… …   Hydraulicians in Europe 1800-2000

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»